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How Plants Make and Sense Changes in Their 
Levels of Gibberellin 

Sumin Lee and Moon-Soo Soh* 
Department of Molecular Biology, Sejong University, Seou1143-747, Korea 

To cope with constantly changing environments, plants employ versatile mechanisms. Gibberellins (GAs) are a class of well- 
characterized plant hormones that enable plastic growth and developments in higher plants throughout their life cycles. Sev- 
eral key components of GA metabolism and signaling have now been revealed through elegant molecular genetics analyses 
powered by genomics information from Arabidopsis and rice. Here, we highlight recent findings concerning the molecular 
mechanisms by which plants control their bioactive GA levels and sense/respond to changes in gibberellin concentrations. 
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GIBBERELLINS AND PLANTS 

Various aspects of growth and development are highly 
plastic in higher plants throughout their life cycles. After 
changes in their external/endogenous environment are per- 
ceived, plants respond to such stimuli by adopting appropri- 
ate developmental alterations. Plant hormones play central 
roles in these physiological/molecular/developmental fluctu- 
ations (Davies, 2004). Gibberellins (GAs) comprise a large 
group of tetracyclic diterpenoid carboxylic acids. Among the 
over 135 different GAs from natural sources (http:// 
www.plant-hormones.info/gibberellins.htm), only certain 
members function as bioactive GAs to control seed germina- 
tion, stem elongation, trichome differentiation, leaf expan- 
sion, floral induction and development, seed set, and fruit 
formation (Richards et al., 2001). Recent detailed analyses 
of the GA-responsive transcriptome as well as studies of 
mutants have demonstrated the involvement of GAs in 
biotic/abiotic stress tolerance (Ogawa et al., 2003; Magome 
et al., 2004; Achard et al., 2006; Cao et al., 2006). indeed, 
a variety of endogenous/external stimuli affect the bioactive- 
GA level as well as GA-signaling (Yamaguchi and Kamiya, 
2000; Hay et al., 2004; Fleet and Sun, 2005; Swain and 
Singh, 2005; Zhao et al., 2007). Here, we review recent 
findings that illuminate the way in which plants can detect 
changes in their endogenous GA levels and modulate their 
developmental programs. 

REGULATORY MECHANISMS OF 
BIOACTIVE-GA LEVELS 

Over the past decade, our knowledge of the process by 
which plants produce bioactive GA has been greatly 
advanced via genetic analysis of GA-deficient mutants, par- 
ticularly in Arabidopsis (Fig. 1). As a result, most of the genes 
involved in GA metabolism have been identified (Hedden 
and Phillips, 2000; Yamaguchi and Kamiya, 2000; Olsze- 
wski et al., 2002). Biologically active GAs are synthesized 
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from geranylgeranyl diphosphate that is converted to ent- 
kaurene, which in turn is oxidized to ent-kaurenoic acid. 
This is further oxidized to GA~2, which is subject to oxidative 
modification at C-20, and then to 3-1] hydroxylation, thus 
producing biologically active GA1 and GA4. Hydroxylation of 
C-2 by GA 2-oxidases (GA2ox) inactivates the biologically 
active GAs (Hedden and Phillips, 2000). Modifications to 
GA levels in response to endogenous/external stimuli 
involve changes in gene expression for either two GA-bio- 
synthetic enzymes -- GA20 oxidase and GA3 oxidase -- or a 
GA-catabolic enzyme, GA2 oxidase. These stimuli include 
light quality, low temperatures, photoperiod, and several 
plant hormones, e.g., GA itself, auxins, brassinosteroids, and 
polyamines (Chiang et al., 1995; Wu et al., 1996; Cowling 
et at., 1998; Yamaguchi et al., 1998; Xu et al., 1999; Ross et 
al., 2000; Bouquin et al., 2001; Alcazar et al., 2005). 

Other, currently unknown, processes also may modulate 
GA levels. Novel classes of GA-deactivation mechanisms 
and their corresponding enzymes have been characterized 
clsing genetics approaches. In addition to GA 2[3-hydroxyla- 
tion by GA2 oxidase, GA-methylation by GAMT1/GAMT2 
functions to deactivate bioactive GA in Arabidopsis (Varban- 
ova et al., 2007). Likewise, a cytochrome p450 monooxyge- 
nase, EUI (ELONGATED UPPERMOST INTERNODE) enzyme, 
catalyzes 16,17-epoxidation of nora13-hydroxylated GAs to 
reduce bioactive GA4 in rice (Zhu et al., 2006). Reversible 
GA-glycosylation also has been characterized (Schneider et 
al., 1992), although the corresponding enzymes remain to 
be determined. Data from our recent work on a novel GA- 
sensitive dominant dwarf mutant in Arabidopsis, designated 
as gibberellin-sensitive dwarf1 (gsdl-1), suggest that GSD1 
represents a novel regulatory locus to modulate the bioac- 
tive GA level, but without affecting the expression of known 
GA-metabolic enzymes (Lee and Soh, unpublished results; 
Soh, 2006). 

Several regulatory factors that control GA biosynthesis at 
particular developmental stages have been identified ill 
plants. These include a basic leucine zipper protein of 
tobacco, RSG (for REPRESSION OF SHOOT GROWTH) 
(Fukazawa et al., 2000; Ishida et al., 2004); the KNOX home- 
odomain protein, NTH15 (Nicotiana tabacum homeobox 15); 
a MADS domain protein, AGL15 (AGAMOUS-LIKE 15); an 
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Figure 1. Regulation of GA biosynthesis and inactivation in Arabidopsis. Geranylgeranyl diphosphate (GGDP), ent-copalyl diphosphate (CDP), 
ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), GA 20-oxidase (GA20ox), GA 3-oxidase 
(GA3ox), GA 2-oxidase (GA2ox), GA methyltransferase (GAMT), ELONGATED UPPERMOST INTERNODE (EUI). 

AT hook protein, AGF1; a basic helix-loop-helix protein, 
SPATULA; and two AP2-type transcription factors, DDF1 
(DWARF AND DELAYED FLOWERING1) and DDF2 
(DWARF AND DELAYED FLOWERING2) (Tatlaka-Ueguchi 
et al., 1998; Magome et al., 2004; Wang et al., 2004; Pen- 
field et al., 2005; Matsushita et al., 2007). Nevertheless, it is 
still poorly understood how plants regulate those factors to 
control the expression of GA-metabolic genes. Significant 
progress has been made into how plants initiate changes in 
their GA levels in response to light quality during Arabidop- 
sis seed germination. When treated with red light, gibberel- 
lin content is increased in the imbibed seeds, thereby 
inducing germination (Borthwick et al., 1952; Toyomasu et 
al., 1993; Yamaguchi et al., 1998; Oh et al., 2006). After 
red light is perceived, photo-transformed Pfr-phytochrome 
enters the nucleus (Nagatani, 2004), where phytochrome 
binds with PIL5(PIF3-LIKE5)/PIF1 (PHYTOCHROME-INTER- 
ACTING FACTOR1) (Huq et al., 2004; Oh et al., 2004). As 
a result, phytochrome appears to direct the proteasome- 
mediated degradation of PIL5 (Oh et al., 2006). Light-inde- 
pendent germination in the pil5 mutant indicates that PIL5 
acts as a negative regulator of germination. Indeed, PIL5 
seems to repress the expression of GA3ox'l/GA3ox2, but 
induces that of GA2ox2 (Oh et al., 2006). Thus, red-light 
promotion of seed germination involves the de-repression of 
PIL5 on GA-biosynthetic/catabolic genes. It is interesting to 
note that a "relief of restraint" working mode also is 
adopted, as seen in the light-induced enhancement of GA 
levels as well as activation of the GA-signaling pathway (Fig. 
2). We expect that integrated functional genomics and pro- 
teomics analyses will soon provide more comprehensive 
knowledge of the mechanisms by which the level/activity of 

GA-metabolic enzymes are controlled by specific endoge- 
nous/external stimuli at the molecular level. 

GA PERCEPTION AND SIGNALING 

Seminal progress has been made toward understanding 
how GA is perceived and its signal is integrated into devel- 
opmental programs. Molecular genetics/reverse genetics 
approaches have been fruitful in identifying the GA-signaling 
components in rice and Arabidopsis. Although genetic anal- 
yses are hampered by functional redundancy as well as by 
the essential roles of GA in seed germination, and pollen 
and seed development (Swain and Singh, 2005), functional 
genomics and reverse genetics technologies provide impor- 
tant clues about GA-signaling in higher plants. It is interest- 
ing to note that a recurring theme of plant developmental 
regulation, i.e., the relief of restraint via protein degradation 
(Callis and Vierstra, 2000; Hellmann and EsteIle, 2002; Vier- 
stra, 2003) is also adopted in GA-signaling. 

GA receptors 

Molecular cloning of a GA-insensitive dwarfing mutant in 
rice, OsGID1, has revealed that this gene encodes a nuclear 
soluble protein that resembles a hormone-sensitive lipase 
(HSL) (Ueguchi-Tanaka et al., 2005). Biochemical analysis 
has shown that this protein can bind a physiologically active 
form of GA. All of these results demonstrate its functioning 
as a bona-fide GA receptor. Three members of the OsGID1 
homologues, AtGID1 a through c, exist in Arabidopsis (Naka- 
jima et al., 2006). Based on their genetic and biochemical 
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functional characterization, they were shown to act as GA 
receptors, playing partially overlapping roles in a subset of 
GA-responsive growth and development (Griffiths et al., 
2006). Even in the presence of GA, the triple knockout 
mutants of AtGIDla-c genes exhibit germination defects, 
dark-green leaves, dwarf stem growth, and poorly devel- 
oped floral organs. GID1 interacts with the DELLA domain 
of DELLA proteins, repressors of GA-dependent responses, 
in a GA-dependent manner in both rice and Arabidopsis 
(Ueguchi-Tanaka et al., 2005; Griffiths et al., 2006). 

DELLA protein, a target of the GA receptor 

Genetic analysis of Arabidopsis has identified a group of 
repressor proteins in GA-signaling. These are called DELLA 
proteins. Koornneef et al. (1985) have isolated a dominant 
mutation, gai-1, that causes GA-insensitive dwarfism in Ara- 
bidopsis. Molecular cloning of the GAI locus has revealed 
that the gai-1 allele is a gain-of-function allele that lacks 17 
amino acids in its N-terminal region, the so-called DELLA 
domain (Peng et al., 1997). The loss-of-function rga mutants 
have been identified as suppressors of GA-deficient mutants 
(Silverstone et al., 1997). Molecular analysis of the RGA 
locus has shown that GAI and RGA comprise a subfamily, 
i.e., the DELIA genes, within the GRAS family of transcrip- 
tional regulators (Silverstone et al., 1998). Arabidopsis con- 
tains five DELIA protein genes: GAI, RGA, RGL1, RGL2, and 
RGL3 (Dill and Sun, 2001). Their genetic characterization 
and functional analysis has demonstrated that, except for 
RGL3, these genes have partially overlapping functions in 
repressing GA-regulated plant growth and development (Dill 
and Sun, 2001 ; King et al., 2001 ; Lee et al., 2002; Cheng et 
al., 2004; Tyler et al., 2004; Cao et al., 2005). In particular, 
GAI and RGA are the major repressors of GA-dependent 
vegetative growth and floral induction; RGL2 represses GA- 
dependent seed germination, with its functioning being 
enhanced by GAI and RGA; and RGA, RGL1, and RGL2 
play major roles in flower development. For example, the 
quadruple mutant of GAI, RGA, RGLT, and RGL2 completely 
suppress gal-3, the null allele of the GA1 locus, which 
exhibits severe GA-deficient phenotypes throughout various 
developmental stages (Cheng et al., 2004; Tyler et al., 2004; 
Cao et al., 2005). Thus, these four DELLA proteins act as 
central negative regulators, repressing GA-dependent germi- 
nation, stem elongation, leaf expansion, and flower/seed 
development. It is also noteworthy that DELLA proteins 
function as GA-signaling repressors in other plant species, 
such as maize, barley, rice, wheat, grape, and Brassica rapa 
(Peng et al., 1999; Ikeda et al., 2001; Boss and Thomas, 
2002; Chandler et al., 2002; Muangprom at al., 2005). This 
indicates the functional conservation of DELLA proteins in 
GA-signaling among higher plants. 

It is largely unknown how DELLA proteins repress the GA- 
dependent response. Along with nuclear localization, the 
existence of a GRAS domain in the DELLA proteins (which 
contains potential protein-protein motifs -- two Leu heptad 
repeat motifs), suggests that these proteins might interact 
with other transcriptional regulators (Sun and Gubler, 2004). 
Recent microarray experiments have revealed a distinct 
DELLA-dependent transcriptome, depending on the devel- 
opmental context (Cao et al., 2006). For example, although 

DELLA proteins repress similar cellular events (e.g., cell-wall 
loosening and cell elongation) during germination and floral 
development, a unique transcriptome is controlled by 
DELLA proteins in the course of GA-dependent germina- 
tion and flower formation. These results implicate the 
involvement of differential transcriptional factors in DELLA- 
mediated repression of specific subsets of GA-responsive 
genes, depending on certain developmental context. Identi- 
fication of the transcriptional complex that mediates DELLA- 
dependent repression would shed light on the ways in 
which plants control specific GA-responsive transcriptomes 
according to their differential development. 

Role of GID1 in the degradation of DELLA proteins 

Except for RGL1, the DELLA proteins undergo 26S pro- 
teasome-mediated proteolysis that is activated by gibberellin 
(Dill et al., 2001; Silverstone et a[., 2001; Fu et al,, 2002; 
Wen and Chang, 2002; Sasaki et al., 2003; Dill et al., 2004; 
Fu et al., 2004). Molecular identification of SLEEPY1 (SLY1) 
has provided critical clues that enhance our understanding 
of how GA-signaling pathways are controlled. SLY1 was orig- 
inally identified from a suppressor screening of the abil-1 
(ABA-insensitivel-1) mutant during the germination process 
(Steber et al., 1998). Physiological analysis has shown that 
SLY1 acts as a positive regulator of GA-signaling. Molecular 
cloning of the SLY1 gene has revealed that it encodes an F- 
box protein, a component of the SCF E3 ubiquitin tigase 
complex (McGinnis et al., 2003). This SCF sLY1 complex 
directly targets DELLA proteins to 26S proteasome-depen- 
dent proteolysis (Dill et al., 2004; Fu et al., 2004). Interest- 
ingly, the interaction between SLY1 and the DELLA proteins 
is enhanced or activated by GA. Recent elegant analysis has 
illustrated the role of GA and its receptor GID1 in the pro- 
teolysis of those DELLA proteins. Three hybrid experiments 
have demonstrated that the interaction of RGA with SLY1 is 
further promoted by GA-bound GID1 (Griffiths et al., 2006). 
Thus, GA-GID appears to facilitate the targeting of DELLA 
proteins to SCFSLu ubiquitination via direct 
interaction with the DELLA proteins (Fig. 2). The working 
model is also supported by the existence of a novel type of 
gain-of~function allele of the DELLA protein from Brassica 
rapa. A mutant form of that protein, BRRGA1-D, functions 
as a GA-insensitive repressor by preventing its interaction 
with SLY1. Brrgal-d contains a missense mutation in the 
GRAS domain, indicating that this domain of the DELLA 
proteins mediates not only repressive functioning but also 
interaction with SLY1 for degradation (Muangprom et al., 
2005). Thus, whichever form of the mutant DELLA proteins 
that cannot interact with GA-GID1 or SLY1 remains stable 
even in the presence of gibberellin. It is noteworthy that 
plants utilize very similar strategies to sense different con- 
centrations of auxin or gibberellin by promoting the destruc- 
tion of repressor proteins, Aux/IAA or DELLA proteins, 
respectively (Dharmasiri et al., 2005; Kepinski and Leyser, 
2005; Ueguchi-Tanaka et al., 2005). 

Future challenges 

Despite the growth in our understanding of GA-signaling, 
several important questions remain to be addressed. 
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Figure 2. A working model of GA-signaling in Arabidopsis. In the absence of GA (left side), DELLA proteins act to repress downstream expres- 
sion of GA-responsive gene. DELLA proteins not recognized by SLEEPY1 (SLY1) remain stable as repressors of GA-responsive gene expression. 
SPINDLY (SPY) may enhance repressive functioning of DELLA proteins. In the presence of GA (right side), GA-bound GiD1 (GA receptor) inter- 
acts with DELLA proteins, triggering unknown structural changes that facilitate interaction between DELLA proteins and SLY1, a component of 
the SCF sty1 E3 ubiquitin ligase complex. Once DELLA proteins are targeted to 26S proteasome-mediated proteolysis, downstream gene expres- 
sion can occur, leading to GA-dependent responses that include germination, stem elongation, leaf expansion, and flowering. PACLUBUTRA- 
ZOL RESISTANCE (PRE) proteins may aid GA-responsive gene expression as positive regulator of GA-signaling. Membrane-localized GA 
receptor (X) remains to be identified. 

Are there other GA receptors besides GIDI ? Although 
GID1 proteins have been characterized as bona fide GA 
receptors in both rice and Arabidopsis (Griffiths et al., 2006), 
an intriguing question remains concerning the existence of 
other such receptors, e.g., those that are membrane-bound. 
The hypothesis that GA-signaling might involve membrane- 
bound receptors and/or membrane-bound signaling compo- 
nents, such as heterotrimeric G-protein/G-protein-coupled 
receptors, is supported by considerable experimental evi- 
dence (Jones et al., 1998; Ashikari et al., 1999; Ueguchi- 
Tanaka et al., 2000; Ullah et al., 2002; Chen et al., 2004). 
Moreover, it should be noted that some GA-dependent 
responses, including seed development and pollen forma- 
tion/germination, appear normal in the Arabidopsis gid'la-c 
triple mutant (Griffiths et al., 2006). These processes may 
involve a different class of GA receptors. In potato, gibberel- 
lin triggers the nuclear localization of a positive GA-signal- 
ing component, PHOR1 (Amador et al., 2001). Taken 
together, it is conceivable that GA receptors other than 
nuclear GID1 may function for a subset of GA-dependent 
responses. 

Are there any other modulators of SLYl-mediated DELLA 

degradation? The basal level of DELLA proteins is signifi- 
cantly higher in the sly1 mutant than for gal-3 or the gidla- 
c triple mutant (Dill et al., 2004; Griffiths et al., 2006). It is 
assumed that stimuli other than GA may facilitate SLY1- 
mediated degradation of DELLA proteins. Indeed, two dif- 
ferent plant hormones, auxin and ethylene affect the stabil- 
ity of those proteins (Achard et al., 2003; Fu and Harberd, 
2003). Thus, DELLA proteins appear to act as integrators of 
multiple plant hormones. We must still determine how 
auxin and ethylene influence the GA-induced destruction of 
DELLA proteins. In a similar manner, other biotic/abiotic 
stimuli may control the stability of those proteins. It is note- 
worthy that the DELLA-dependent transcriptome includes 
genes implicated in biotic/abiotic stress-resistance (Cao et 
al., 2006). 

Are there any other targets of GIDla-c besides DELLAs? 
Although the DELLA proteins appear to be largely responsi- 
ble for the massive changes in gene expression driven by 
GA, some sets of the GA-responsive transcriptome are not 
altered by quadruple muta~nts of those proteins (Ogawa et 
al., 2003; Cao et al., 2006). For example, the gidla- c triple 
mutant of GA receptors exhibits more severe phenotypes 
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than slyl-lO, even though the level of DELLA proteins in 
sly1-10 is higher than in the triple mutant (Griffiths et al., 
2006). These results indicate that GA receptors may have 
other regulatory functions through a DELLA-independent 
pathway. 

What are the roles for kinase(s)/phosphatase(s) in conjunc- 
tion with the DELLA proteins? DELLA proteins are possibly 
phospho-proteins (Sasaki et al., 2003; Hussain et al., 2005). 
Treatment with protein phosphatase inhibitors blocks the 
GA-induced degradation of DELLA proteins (Fu et al., 2002; 
Hussain et al., 2005). Moreover, the results of functional 
analysis, combined with site-directed mutagenesis of DELLA 
proteins, has suggested that their phosphorylation is an 
important regulatory process not only for DELLA-degrada- 
tion but also for their repressive functioning (Hussain et al., 
2005). Identification of the protein kinases/phosphatases 
involved in the phosphorylation of DELLA proteins would 
provide impo~tant insight into the regulation of DELLA-func- 
tioning. 

What are the signaling-network and biochemical functions 
of other players implicated in GA-signaling? Previous genetic 
analysis has identified several classes of components that 
affect GA-induced growth and development. However, 
those elements have been poorly characterized. Positive sig- 
naling components include a CHD3 chromatin remodeling 
factor (PICKLE); a Katanin-like microtubule-associated pro- 
tein, LUE1; and non-DNA binding helix-loop-helix proteins 
(i.e., PRE proteins) (Ogas et al., 1999; Bouquin et al., 2003; 
Lee et al., 2006). A diverse family of transcriptional factors, 
e.g., the GAMYB proteins (Gocal et al., 2001 ; Gubler et al., 
2002; Diaz et al., 2002), a MADS protein AGL20/SOC1 
(Moon et al., 2003), SQUAMOSA-PR-OMOTER-BINDING- 
PROTEIN-LIKE8 (SPL8) (Zhang et al., 2007), and a bHLH 
protein NAN-JANG-I (Kim et al., 2005), have been 
described as mediating a subset of GA-dependent growth 
processes. Notably, the overexpression of PRE genes sup- 
presses most of the developmental defects in a GA-defi- 
cient mutant, ga2-201 (Lee et al., 2006). Together with 
DELLA-mediated repression of this PRE gene expression, our 
results imply that the PRE proteins are early targets of the 
DELLA-dependent repression of GA responses (Fig. 2). 

Negative regulators of GA-signaling include microRNA 
miR159, SHORT INTERNODE (SHI), and SPINDLY (SPY). 
The first, miR159, targets and directly cleaves the mRNA 
that encodes GAMYB-related proteins. These are involved 
in GA-dependent floral induction and anther development 
(Achard et al., 2004). SHI encodes a RING-finger protein 
whose overexpression causes GA-insensitive dwarf plants 
(Fridborg et al., 1999), while SPY encodes an O-linked N- 
acetylglucosamine transferase (OGT), in which a loss-of- 
function mutation partially suppresses all aspects of the GA- 
deficient syndrome in gal mutants (Jacobsen and Olszewski, 
1993; Jacobsen et al., 1996). Observations of the pleiotropic 
effects in the spy mutant imply that its functions may be 
related to the early events of GA-signa]ing (Swain et al., 2001, 
2002). SPY appears to enhance the repressive functioning of 
DELLA proteins (without affecting DELLA-degradation), by 
altering the phosphorylation status of the DELLA proteins (Shi- 
mada et al., 2006; Silverstone et al., 2007). It should be 
noted that SPY is also involved in other biological processes, 

e.g., the brassinosteroid pathway, cytokinin responses, and 
components of the circadian clock (Tseng et al., 2004; 
Greenboim-Wainberg et al., 2005; Shimada et al., 2006). 
Moreover, the synthetic lethal phenotypes of the double 
mutant of SPY and its homologue SECRET AGENT (SEC) 
indicate that these gene products may have broader func- 
tions than previously thought (Hartwek et al., 2002). It is still 
unclear about the molecular target of SPY-associated OGT 
activity in GA-signaling. 

Together with the functional characterization of these GA- 
signaling components, a possible molecular network and/or 
cross-talk among them should be investigated to improve 
our understanding of how GA signals are relayed and inte- 
grated in other developmental programs. 

CONCLUDING REMARKS 

With the aid of molecular genetics studies, we are now in 
the middle of an exciting phase that will enhance our 
knowledge of how plants alter their GA level and respond to 
different concentrations of gibberellin. Further refined and 
integrated approaches that employ gain-of-function mutant- 
screening, reverse-genetics analysis, microarrays, proteom- 
ics, and metabolomics approaches will unveil the missing 
pieces and fill the gaps in our understanding of various regu- 
latory components/mechanisms. As exemplified by the 
recent discovery that the 'green revolution' genes of rice 
and wheat are related to GA metabolism and signaling 
(Peng et al., 1999; Hedden, 2003; Sakamoto et al., 2003; 
Sun and Gubler, 2004), additional comprehensive data will 
provide novel opportunities for generating genetically engi- 
neered crop varieties with increased yield and productivity. 
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